The ageing gut microbiota and the impact of prebiotics

Gemma Walton
Overview

- The transition of age
- Ageing and disease risk
- Ageing – the microbiota – from birth to old age
- Prebiotics – what can they do
- Cancer risk?
- Immunosenescence and inflammageing??
How are we ageing?

- Population pyramid EU-28, 2001 and 2013
- (Eurostat)
What does the future hold?

- Increased longevity
- Reduced fertility

(1) 2012 provisional 2080 projections (EUROPOP2012).
Source: Eurostat (online data codes: demo_agegroup and proj_13homs)
Ageing

• “Ageing is the single most important risk factor underpinning the major chronic diseases. As healthy life expectancy has not increased at the same rate as longevity, the prevalence of age-related disease continues to increase.” Newcastle University
Age associated illness

- Diabetes
- Cardiovascular disease
- Cancers
- Depression
- Neurodegenerative diseases
- Mobility
- Vision
- Arthritis
- Hypertension
Gut microbiota changes – coincidence?

- The gut microbiota
 - Birth
 - Breast v Formula
 - Adulthood
 - Ageing
The ageing microbiota

- Bifidobacterial decline?
 - Mitsuoka, 1992; Hopkins et al., 2002; Woodmansey et al., 2004; Mueller et al., 2006
- Culturing

- Reduced bifidobacteria diversity (Zwielehner et al., 2009)
- Centenarian bifidobacterial reductions (Biagi et al., 2010)
The ageing microbiota

Other observations

- Bacteroides – higher proportion
- More *Clostridium* cluster IV
- Less *Clostridium* cluster XIV
- Claesson *et al.*, 2009
Gut changes

- A change in balance
- More proteolysis
- Less SCFA

- Colonic protein degradation – cancer links
Ageing

- Is there a magic bullet to help healthy ageing?
In vivo

A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age

Gemma E. Waltona1 c1, Ellen G. H. M. van den Heuvela2, Marit H. W. Kostersa2, Robert A. Rastalla1, Kieran M. Tuohya1 and Glenn R. Gibsona1

Not an elderly population
Target before changes occur
Study design

Samples 1-6 taken for:
Bacterial characterisation; Genotoxity; \textit{In vitro} SCFA
Study

39 volunteers took part in the study (18m, 21f)
Over the age of 50
Interval Plot of Bifidobacteria
Bars are One Standard Error from the Mean

<table>
<thead>
<tr>
<th></th>
<th>placebo</th>
<th>prebiotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifidobacteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel variable: Treatment

* - p = 0.006, t-test, p = 0.014 – Friedman
Results

- Faecal water screening – 45% volunteers elevated levels of genotoxicity (i.e. $>30\%$)
Genotoxicity before and after prebiotic

DNA tail intensity (%) vs Volunteer number

- Vol. 19, 23, 28, 29, 30

- Red = before prebiotic
- Gray = prebiotic

Bars represent the percentage DNA tail intensity for each volunteer before and after prebiotic treatment.
Parallel Gut models

- 3 volunteers stool samples were used in the GM system
- Dosed with 2g GOS twice daily
Gut model

- Three stage continuous culture system
- pH and volume
- RT
- Faecal inoculum
- Steady state
Gut models - Vessel 3

Log10 cfu/ml

- Total bacteria
- Bifidobacteria
- Lactobacillus
- E. coli
- Bacteroides

Log10 Bacterial numbers / ml

- E. rectale
- C. coccoides
- C. histolyticum
- C. perfringes

= Steady state 1
= Steady state 2
SCFA in Vessel 1

SCFA in Vessel 2

SCFA in Vessel 3

SCFA concentration (mM)

Acetate
Propionate
Iso butyrate
Butyrate
Iso valerate
Valerate
Caproic

Acetate
Propionate
Iso butyrate
Butyrate
Iso valerate
Valerate
Caproic

SS1
SS2
Conclusions

• Bifidogenic effects seen in the GM and trial
• Increase in butyrate seen *in vitro*
• No genotoxic changes

A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age

Gemma E. Waltona1, Ellen G. H. M. van den Heuvela2, Marit H. W. Kostersa2, Robert A. Rastalla1, Kieran M. Tuohya1 and Glenn R. Gibsona1

BJN 107(10) 1466-1475
Re-addressing the balance

- Impact on health??

- Immunosenescence

- Loosely defined as decline in immune system brought on by ageing

- However - immune system is complex and multifaceted
Immunosenescence signs

- Decline of T-cell function
- Reduced progenitor B-cells
- Reduce natural killer cells
- Lower anti-body titre (humoural response)
- Inflammageing
How can prebiotics aid immune function?

- Increasing growth of beneficial bacteria thus inhibiting pathogenic growth
- Reducing stimulation of pro-inflammatory cytokines which cause chronic inflammation
Study design

10 week intervention
Blood and faeces collected
Bacterial populations results summary

Changes in faecal bacterial populations assessed through fluorescent *in situ* hybridisation (FISH)

- *Bifidobacterium spp.*
- *Bacteroides spp.*
- *Eubacterium rectale – Clostridium coccoides* (EREC)

were significantly higher after B-GOS compared to placebo
Natural Killer cell activity was significantly higher following B-GOS compared to placebo.

![Graph showing natural killer cell activity over time points (Baseline, wk 5, wk 10) for placebo and B-GOS groups. The graph indicates that cell cytotoxicity is higher in the B-GOS group compared to the placebo group at all time points.]
IL-6 cytokine was lower following B-GOS compared to placebo at week 10.
Prebiotic impact

- Readdressing the microbial balance
- Reducing signs of inflammation

<table>
<thead>
<tr>
<th></th>
<th>placebo</th>
<th>B-GOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>5wk</td>
</tr>
<tr>
<td>log10 cells/g feces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifidobacterium spp.</td>
<td>9.15 ± 0.35</td>
<td>9.19 ± 0.31</td>
</tr>
<tr>
<td>Bacteroides spp.</td>
<td>10.05 ± 0.19</td>
<td>10.12 ± 0.16(^2)</td>
</tr>
<tr>
<td>Lactobacillus-Enterococcus spp.</td>
<td>9.11 ± 0.20</td>
<td>9.04 ± 0.24(^6)</td>
</tr>
<tr>
<td>Clostridium coccoides-Eubacterium rectale</td>
<td>10.26 ± 0.13</td>
<td>10.23 ± 0.12</td>
</tr>
<tr>
<td>Clostridium histolyticum group</td>
<td>9.52 ± 0.18</td>
<td>9.54 ± 0.20</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>8.38 ± 0.29</td>
<td>8.48 ± 0.35(^9)</td>
</tr>
<tr>
<td>Desulfovibrio spp.</td>
<td>8.15 ± 0.28</td>
<td>8.18 ± 0.30</td>
</tr>
</tbody>
</table>
Effect on immunity

Immune function markers at 10 weeks

GOS vs Placebo
- IL-6, P<0.001
- IL-10 and TNF-α, P<0.01
- IL-1β, P<0.05

IL-10 (■)
IL-1β (■)
TNF-α (■)
IL-6 (■) – on the right axis
Cells engaged in phagocytosis

\[\text{% positive} \]

- Placebo
- GOS

Baseline	Week 5	Week 10

\[\text{‡ Different from baseline (P<0.001) and placebo (P<0.001)} \]
\[\text{† Different from baseline (P<0.001) and placebo (P<0.05)} \]
\[* \text{ Different from baseline (P<0.001), placebo (P<0.001) and 5 weeks (P<0.001)} \]

Baseline – no difference

Effect on immunity

Phagocytic activity against \textit{E. coli}
Effect on NK cell activity

‡ Different from baseline (P<0.001) and 5 weeks (P<0.001)
† Different from baseline (P<0.001) and placebo (P<0.05)
* Different from baseline (P<0.001), 5 weeks (P<0.001) and placebo (P<0.001)
Baseline – no difference

Summarise

- Ageing concerns are increasing
- Prebiotics intervention
- Potentially positive microbial balance
- Increased SCFA
- Reduced signs of immunosenescence and inflammageing
Acknowledgements

- Prof. Glenn Gibson
- Dr. Ruth Toward
- Dr. Kieran Tuohy
- Dr. Ellen van den Heuvel
- Dr. Jelena Vulevic
- Prof. Bob Rastall
- Prof. Adrian Williams
Thank you!

• It’s all about the right balance